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Abstract—The system of equations of the linear theory of isotropic elastic shells of revolution for stress and strain
sinusoidal in the polar angle of the base plane with period 2x is reduced to two simultaneous second order ordinary
differential equations which are remarkably similar to the corresponding equations for symmetric bending.
The reduction makes extensive use of the static geometric analogy to simplify the analysis and allows for the
possibility of a non-periodic displacement field. The problem of asymmetric twisting and bending of ring shell
sectors associated with the non-periodic displacement state is formulated for the first time within the framework
of shell theory.

1. INTRODUCTION

WE ARE concerned here with the class of linear elastostatic problems of shells of revolution
involving stress and strain distributions whose dependence on the polar angle @ of the
base plane is through factors sin 8 or cos 8. A typical loading which gives rise to such stress
distributions is wind load. Restricting himself to the case where the associate displacement
state also has this dependence on 0, Chernin [1] showed that the complete system of shell
equations for this class of problems may be reduced to a fourth order system of two simul-
taneous ordinary differential equations for a stress function and a displacement function.
Starting with Marguerre’s equations, a corresponding result for shallow shells was obtained
by Lardner and Simmonds [4] via a different approach. For the special case of spherical
shells, the possibility of lowering the order of the system of shell equations from eight to
four was first noted in E. Schwerin’s dissertation [13]. For conical shells, the reduction
appears to have been first carried out by Love [5]. It should be mentioned that Novozhilov
[7] has reduced the problem to the solution of one second order differential equation for
a complex stress function. But, as pointed out by Chernin, his reduction requires the
omission of a number of terms from the original system of shell equations.

In this paper, we present an alternate reduction to a set of two simultaneous second order
differential equations. The following characteristics of our reduction are noted :

{1) Motivated by and patterned after a recent version [11] of the classical Reissner—
Meissner reduction for symmetric bending of shells of revolution [6, 8, 12], our choice of
the two primary stress function and strain function variables naturally suggests itself, and
the reduction is straightforward.

(2) Starting with a formulation of the shell problem in terms of equilibrium, constitutive
and compatibility equations as in [11], the present reduction makes use of the static
geometric duality, in a manner more extensive than Chernin’s [1, 3] and including the
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duality of the stress strain relations. This extensive use of the duality reduces the complexity
of the analysis substantially and in a nontrivial way (see Appendix) and attains a maximum
degree of symmetry in the final results.

(3) Allowance is made for the possibility of a nonperiodic displacement state compatibie
with the sinusoidal strain measures. The inclusion of non-periodic displacements enables us
to study a class of dislocations problems, which does not appear to have been considered
previously within the scope of shell theory.

2. DIFFERENTIAL EQUATIONS AND STATIC GEOMETRIC DUALITY

With reference to cylindrical coordinates (r, 8, z), the middle surface of a shell of revolu-
tion may be described by the parametric equations r = ) and z = z{(£). Differential
equations governing the linear elastostatic behavior of an isotropic elastic shell of revolu-
tion can be found in [9-11] and elsewhere.

We consider in this work stress resultants (N, Q), couples (M), strain (¢}, curvature
changes (k, A} and external surface load components (p) (and edge load components) of the
form (see Fig. 1)

F16. 1. An element of the shell.

(N.g,No, Q;aMgaMe»Koa'cg,;to,go,sgvpgvl’n) = (ng,nea%wm:»mﬁ»kﬁ’ké’le’eo’eé’ﬁé’ﬁ")COSH
(2.1)

(N{BaNG.iaQBaMéO = Mog"‘ge»’cog’;tgvsge = &g, Pg) = ("{ov”aga%,m,k;oakeg,lgseapa)sm 0.

We note that 4, and 4, are the normal components of the curvature change vectors [11].
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F1G. 2. Asymmetric bending and twisting of a ring sector of shell of revolution.

With (1), the system of shell equations then becomes a set of ordinary differential equa-
tions for the ¢-dependent quantities n;, ny, etc. In particular, the equilibrium equations

become [9]

(rng) +angs—1'ng gy (rns) —ong+r'n q
e 7m0 9 s 5 =0 6 0 05 46 o _
” + R, + P , o + R, +Pe=0, (2.2,2.3)

(rqs) +ogqy 1, 1y (rmg) +am—r'm,

~ R R - —g; =0, (24,25)

—qo =0, Hegg—Nge—pm =0 (2.6,2.7)

where a prime indicates differentiation with respect to ¢ and where
1 4 1 r'z —r'z" 1 1

a = J[(r") +(z)], R, — R_g R S p= R (2.8)
0 4

and, for vanishing transverse shearing strains, the compatibility equations become

—(rko) +akeg—r'k, 1 kos) 'k
Ok ¥ okeo=rke Jo o Chdtoketrke Lo 59210
ro R, ro R,
(rlo)/ —al§ kg k: (reo)l —oe— r/eé
- +R§+I_2;_0’ «—7(1———19:0 (2.11,2.12)
(re) +ae;+r'e
_“—Eé,—*+ l;=0, koe—keo+pe=0. (2.13,2.14)
We will take the stress—strain relations in the form
ey = A(n—v,ny), eg = A(ng—vgny), e = As(ngp+ng) (2.15)

my = D(kg + kag), mé = D(k§ + kae)3 m = DS(kéﬂ + keg) (2.16)



962 FREDERIC Y. M. WaN

where Ag = 4(1+v))4 and Dg = (1 —v,)D. For a homogeneous shell, we have further

A ! Eh?
Vo= vy = v, N D=

e 3 173
ER’ 21 =+?) (2.17)

where E, v and h are Young’s modulus, Poisson’s ratio and the shell thickness, respectively.

We may use (13) and (12) to eliminate /; and ly from (9)<(11) to obtain the better known
form of the compatibility equations for the conventional theory of shells [10]. We prefer
the present form of six compatibility equations because it displays most simply the static
geometric duality with the equilibrium equations as indicated in the following table:

n ny gy Hog qs 4y I My m

—k, — ke - ke ke Iy 1. ¢y e —¢

We note that without the explicit appearance of [, and /,, there would have been no duals for
the transverse shear stress resultants. The same duality also holds between the stress strain
relations (15) and (16) if we take A4 and v, to be the dual of — D and — v, respectively. This
concept of static geometric duality will be used extensively in the subsequent development,

The equilibrium equations (2}+7), the compatibility equations (9}(14) and the stress
strain relations {15) and {16) are a system of cighteen equations for the eighteen unknowns
on the right hand side of (1). Together with appropriately prescribed boundary conditions,
they determine all measures of stress and strain. Having the strain measures, we may
then, if we wish, compute the displacement components by considering the strain dis-
placement relations as a system of first order differential equations.

3. FIRST INTEGRALS

The system of equilibrium equations (2.2)-2.7) has two first integrals [1, 13]. One of
these is obtained by forming the combination rr'(2.2) —ra (2.3)—rz'(2.4). This results in

P o
Mg Q= PHgy = 3.1
o e, deT e -
with
PO =7 [ o rpetoprde (3.2

o

The other follows by considering the combination rof2.5—rr'(2.6)—r*r'(2.4)— r’z(2.2)
and by using equations (2.7) and (1) to get

P P, T,
—{oumg—rm—rr'q;—rzng) = —--"+—
o n n

with

4
T == f [y’ + 22 )Py +(rz' — zr)Pe + azpglr dS. (3.4)
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Overall equilibrium considerations show the quantities P, and T, to have the meaning of
a resultant side force in the x-direction and a resultant tilting moment turning about the
y-axis.
By the static geometric duality, we now know without separate derivations two first
integrals of the compatibility equations in the form
Q

—(Zk9+rk9§+zlg) _ & (35)
o o i

Q. U
2(aeo+r’e—rr’l,,+rz'k0) B T+t (3.6)
b4

In these, the quantities Q, and U, are constants of integration. If the shell is slit along a
meridian, these quantities will be shown in section (6) to have the meaning of relative edge
rotation and displacement, i.e. dislocations of the Volterra type for shells [2].

With the four first integrals (1), (3), (5) and (6), the system of shell equations is effectively
reduced from an eighth order to a fourth order system. Our next objective will be to reduce
this system to two coupled second order equations of a form which is very similar to that of
the Reissner—Meissner system [8, 11] for symmetric bending of shells of revolution.

4. REDUCTION TO TWO SIMULTANEOUS EQUATIONS

The reduction for the symmetric bending problem suggests that our final two differential
equations will probably come from the moment equilibrium equation (2.5) and the dual
compatibility equation (2.12). In deciding on two suitable primary dependent variables (a
stress function and a displacement or strain function) we look at the terms entering into the
moment equilibrium equation (2.5). Among these, the symmetric bending reduction suggests
that we probably should not use m;, my and ¢,, and therefore should not use the dual quanti-
ties ey, e, and Iy either, if we want to preserve the static geometric duality. This leaves us
(tentatively) with m and the dual quantity e.

To express the remaining stress resultants and couples in terms of m and e, we first use
the (sixth) equilibrium equation (2.7) and the last of the stress strain relations (2.15) to get

1{ e 1 e
- = |- _ 4.1
Ngg = 2( S+pm), Nge 2( : pm) 4.1)

where p has been defined in (1.8). The dual considerations give us
o — 1{m e = 1{m
0 =5 Dy pe), =3 FS+PE . 4.2)
To get m, mg and g, [which enter into the moment equilibrium equation (2.5)] and ¢,, e
and I, (which enter into the dual compatibility equation) in terms of m and e we observe that

(1) with n, expressed in terms of ¢, and e, by way of the stress—strain relations, the first
integrals (3.1) and (3.3) may be written as

g (et = e 4
T gy ety = T\ g TP L, (4.3)
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and o z 4

(2) Elimination of g, from (2.3) and (2.6}, the use of the expression for n, in terms of ¢, and
e: along with the use of (1) give us a third equation for the quantities of interest in the

form _
C el e
J el e

i

X gt (eg+V.es) il I
YR veey) = | =|—+pm
R, A ) oI TS TP

. ('rm)’+r'm o
F ot .
R, R, M
Equations (3)+5) together with their duals may be thought of as six equations for the
six unknowns, m,, my, g, and their duals, in terms of m and e.
Equation {5) and its dual suggest that to avoid the unnecessary appearance of z” and r”
(associated with p’), we should take as our stress and strain function

{4.5)

rfe
Y= 3 ;1:
instead of m and e. Note that in view of (3.1), we also have i = r[(r'/ojn; —(z'/2)g; — P/mr].
Therefore, our final choice of stress and strain functions is formally the same as that of the
theory of symmetric bending {except for the load terms) as formulated in [8, 117+

Upon solving for m and e from (6), we get

rlm .
+pm) =riyg, ¢= 5(7)““—/)@) = rke (4.6)
by

24 2Dy
o= (h—pDg), m o= (p+pA 4.7)
7”(]+66)(l!/ pDs) A +22) ¢+ pAs) (4.7
with
¢} = DgAgp®. (4.8}
With (7), the solution of the system of equations (3)5) and their duals is
1T = r bowDr? v Drz Dr |
- L 0o L A
4 a +£3)-12 ol ro’ ra’ ra
me| | =R ar g wbrwbe
o o : o x
; Dr’ Dz
My 0 O EiRg ? L'XE 73 — V),D
v AP vArz Ar - r ]
I 1462 - 0
[0 I'C)C1 7‘0(3 rot ( 3) z a”
¢ Al AT R wr oy
o o . o2 A
’ Az 5 5
e A a0 0 2R,
LT L x- el :

+ Of course, we could have chosen rng and rkye as our primary dependent variables from the very beginning.
But indicating our process of arriving at them is intended to help to dispel any aura of mystery. Note that the
normal is positive outward in [11] but positive inward here. This accounts for the difference in sign in front of g..
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P
_g —i-i-l//)
n
2Dsr'(¢p+ Aspy) o T, zP,
T
re(1+e¢g3) it =
L+ | 1+£§ r 2Ds¢ |'  2Dgr'¢ R
~ + +r
{[1+82‘//] 1+£0 rlp+ Ro1+ed)|  rR41+¢d) *Po
Q
2 —"+¢) (4.9)
r\n
2Asr(‘// DsP‘f’ XUy ZQ
rX(1+¢3)
e ] Lredr [ 249 ], 240y
all 1+e3 1+80 Ry(1+ed) |  rRy(1+&})
3 1 2 1
where ¢} = DgA (———, 82=DA(— )
1 ssPRaRé 2 SSR%R?
(4.10)
2 _ 4DsAs 2 4DsAs
3 rz ’ 4 Rg

For simplicity’s sake, we have restricted ourselves to shells for which v, = v, in getting (9),
but will continue to distinguish the two for the ease of application of static geometric duality.

At first sight, it appears as if we would have to invert a 6 x 6 matrix to get (9). But by the
use of the static geometric duality, we actually need only to invert two 3 x 3 matrices (see
Appendix).

We may now substitute the expressions for m,, my, . .. and I, given by (9) as well as the
expressions for mand e from (7) into the moment equilibrium equation (2.5) and into the dual
compatibility equation (2.12) to get two simultaneous second order differential equations
for  and ¢. We note that the resulting two equations are the exact consequences of the
original shell equations and that, except for terms involving pg, explicitly, they are the static
geometric duals of each other, with ¢, Q, and U, being the duals of y, P, and T, respectively.

Having e, and e, from (9), we get n; and n, from the inverted stress strain relations
obtained from the first two relations of (2.15). From (1), (6) and (7), we have further

l—golp 2DsP¢’
L+eyr 1+e2r

Mg = o = (4.11,4.12)

Finally, g, may be obtained from the moment equilibrium equation (2.6).

5. AN ACCURATE SET OF SIMPLIFIED EQUATIONS

Upon carrying out the substitution of (4.9) and (4.7) into (2.5) and (2.12), we obtain two
simultaneous equations which are exact consequences of the original shell equations. These
exact results are rather complicated. Fortunately, the bulk of the complexity is due to terms
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which are O(DA/R?) or O(DA/r%) where R and r, are representative magnitudes of the radi
or curvature and of the radial dimension of the shell, respectively. We follow Chernin and
consider henceforth only shells for which O(DA/R?) and O(DA/r3) are negligible in com-
parison with unityt. The two exact differential equations for ¢ and i can then be simplified
to read

. (Drja) r\? [(1+Vb)D’"i// ] z' l
e I dg ) S (=) - T
¢ Drio ¢ { (r Dr/a =) J¢ Dr/zyw
_ 13 (z/rY '[; r V;,D Q . v, I B
1 D/ o Drijoa Dr/oc ro rc L e (5-b
(T v |,
L ,Ajb)_“{,w_( +7~ }
r n
. (Arja) (- g)Alr o 11
st —{4(;) SO 3 e e
Q. (zry U, 7 I (vA T, ! ,
T e e e e SO Jod P z 52
n Ao 7w Arz/oc+Ar/'oc{ ro [ (2 T }} >:2)
L—y ' | P, T, A
+(:sl{j(rr'+z:' —-»-:‘12'1 (Ar pe—)AJr(I»—v r'apg.
r o | Arfa

We note the remarkable fact that the left hand sides of (1) and (2) differ only in the coefficient
of the third term from those of the symmetric bending equations [11]1.

Corresponding simplifications in the expressions for stress resultants and couples give
us

Y 4 e
”fa}:7~ ’%:-‘;“DU'V;}) EQVRZ ;

x,,Q rr +:: U, :'}

D
me = —;%4){‘*'“4”";:

%) 2
re nor

wDA 2r (Ag/Ry) =y P, . T, }
R,;ot {’//4’ [r +M4?:Ra ][//+ r? "‘{I(m +2z) n

+ Note that R = r,, for cylindrical shells and that D4 = - O{h?) for homogeneous and isotropic shells
1 For instance, the homogeneous counterpart of (1) for symmetric bending is

(Dr/ey P\ 2 (\hDr a)} z
IRt DS I e T = 0.
o Dr/x 4 { ( r) Dria ¢ Dria v
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D r Q r'+zz U, 7
— (1 — - 2
My a{vb¢ +( +Vb)r¢+ PR . rz}

2DAg (., 12r vi(Ag/Rg) T I
2 {l/, +[T+W]'” 201 vb)zpe}

1(z Pjfz\" T,v) Drf{, 2r vQ r+zz wU,Z
o ] B Bl et

r

alr n nr| ra n r nor
D v Q. rr+zz U,z Agy
= i 42l —+— S S ¢ | A
1o roc{(b+ (r+D)¢+n r? o R,

and these expressions for stress measures and strain measures satisfy all equilibrium,
compatibility and constitutive equations up to terms of the order DA/R* and DA/r}.

For the case of homogeneous shells with periodic displacement fields, equations (1)-(3)
constitute a simplified theory which is essentially equivalent to that of Chernin [1]. For
instance, the counterpart of equation (1) as obtained by Chernin (with negligible terms
deleted) is

1 &’ 1[ o dRq,]d(I)

-RZ d—(ﬁj‘l’@ COSs _i_i ‘d;‘ @
. , (5.4)
R
—i[(uv) sin @ +2(1 —v)-2 +-2(1 + v) cos? <p4’]q>—5“l‘3\11 — F(g).
rR, r r Dr

The displacement function ® is related to the middle surface meridional and normal dis-
placement components u, = U,(¢)cos 6 and w = W(@) cos 0 by the relation

1 [dW 1 .
d = —i;(—dE—U“’) +;(Wcos @—U,sin ). (5.5)

The stress function ¥ is the static geometric dual of ®t. It can be verified that, except for
load terms, ® = —rky + z'e/x and that for a homogeneous shell (4) is the same (up to terms
of the order h%/R? and h?/r}) as (1).

Chernin’s use of the azimuthal angle ¢ enclosed by the midsurface normal and the axis
of revolution makes necessary additional transformations of the results whenever 1/R,, = 0.
While these transformations are not difficult in general, it seems more satisfying to have
a set of equations which are directly usable for all shells of revolution including the limiting
case of a circular cylindrical shell and the limiting case of a flat plate.

An additional simplification of (3) not considered by Chernin consists of omitting all
underlined terms in the expressions for the stress resultants n,, n,, and g, and the twisting
couple m. That this simplification does not affect the accuracy of our results is evident from
the following consideration.

Suppose that the underlined terms contributed significantly to either n, or ny,. In this
case, we would have

DqS)

R (5.6)

b=l
where u is a dimensionless scale length at most of order unity and max (\/(DA)/R,

t How Chernin arrived at this ingenious choice of primary dependent variables is not clear to this writer.
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\/ (DA)/ro) « p. The contributions of y-terms (ie. the underlined terms) to m and g, arc
then of order DA/uR> compared to the contribution of the ¢-terms and are therefore
negligible. Moreover, the relative magnitude of the direct and bending stresses in this case is

op nth h o
o5 O(ém/hg) - O(}i)' =

Because of this, the accuracy of the expressions for n, and n, for the present class of problems
is of no consequence and therefore, the underlined terms in these expressions may be
omitted.

The argument for omitting the underlined terms in cases where the i-terms contributes
significantly to m and g, proceeds similarly. Together, they suggest that all underlined
terms in (3) may be omitted without affecting the accuracy of the final results. While the
same arguments suggest that we may also simplify the expressions for ny, m, and my,
the fact that these quantities are also involved in the accuracy of the expressions for resultant
force and moment {see Section 7) prevents us from making these simplifications. At the
same time, the ¢-terms in g, definitely cannot be omitted since the magnitude of z may be
small throughout the shell (z vanishes identically for the limiting case of a flat plate).

6. A CLASS OF NON-PERIODIC DISPLACEMENT FIELDS

With a view toward an interpretation of the constants Q. and U,. we consider non-
periodic displacement states of the form

(e, W, ) = (U, W, ;) cos 0 +(U ., W, ,)0sin 0
(6.1)
(g, Gg. ) = (U,, ®p, Q) sin 0+(T,, &, Q) cos 0

where u,u, and w are mid-surface translational displacement components in the
meridional, circumferential and normal direction, respectively, and ¢,, ¢ and w are
rotational displacement components turning about these same directions, respectively.
The quantities inside the parentheses on the right hand side of (1) are functions of & onlyt.
Upon substituting (1) into the strain displacement relations [9, 11]

u: W Up WU
Er = V+,A..,’ 55() = e = () W, = ¢ +,_ PO
> a R T o~ T4 R,
Uy r'uy w Uy Fiy Wty
£p = =t By = — =+, Yo = Ppt o R
r ro Ry roooro ¥ 9 62)
b; K Po © 1 o’ 4 b0
Ke = — [T e
S ¥ o RS ST a R
L P rps o .o ¢
KG — ‘*}"——"", Kﬁf P U A A R /'6 = ———
rooora ) rrx Ry r Ry

(where a dot indicates differentiation with respect to the polar angle )

+ The author is indebted to E. Reissner for the suggestion to consider the possible use of displacement fields
of this form in the theory of shells of revolution.
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and requiring that the strain measures vary sinusoidally as given by (2.1), we find that
possible displacement fields of the form (1) are

’

r z¥ —rZ z ' +zZ' )
(ug, w, g = (Ug, W, @) cos 9+(;u0+ " do, L I o, Po)0sin b
(6.3)
. r/ Z!
(g, Qg ) = (Uy, @y, Q) sin 0+ {up+ 2o, ;%, ;d)o) 0 cos 8
where u, and ¢, are arbitrary constants.
The corresponding strain measures are given by
i W 1 / !
g = (%-{-—) cos 0, £0=(Ue+r—U§—iW+z¢0+uo)cos(9
; o R r o o
U . 1 r r zr' —rz' .
Eeg = (?"—Q) sin 6, 8y = — U§+; Uo—rQ—;uO— d)o) sin 0
w' w U, 7 r+zz' .
Ve = (®5+__F:) cos 0, Vo = ((DG—T_FZ_FTX“O— o 4)0) sin 0
@, 1 r r Q .+,
= —<cosf = | Dy +-D,+— 0s0, Ag=|———-""}cost (6.4
Ke o(cos , Kg r( 9+a §+a¢>0 cos 0 (r R, cos (6.4)
o, Q) . 1 r z' ) ) Q @y .
Keo :(;_E) sin 6, Koe = — (I),:+ECI)9+;Q—(/>O) sin 6, Ag = ;+E§— sin 6.
From these follow the relations
2
Fko+ tkge+ 21y = 7"‘4)0 (6.5)
and
, .o r 20
Zkg—rle+;eg+7e = ;7(“0+Z¢0). (66)
A comparison of (5) and (6) with (3.5) and (3.6) leads to the identifications
Q. U,
G = o Ug = P 6.7)

Inasmuch as the above non-periodic displacement state is not possible if the shell is closed

in the circumferential direction, the constants Q, and U, must be equal to zero for such a
shell.
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On the other hand, the portion of the displacement field associated with u, and ¢,
in (3) can be written in the form

o - ;

by = gbo(){—; cos B t, +sin 0 t,+ 5 €08 Onpy = — Py,
Fug+(zr —rz i z' oz )

= 0{40 o 1o sin O t.+(ug+z¢y) cos 0 t,— ot 2200 sin ()n(( (6.8)
od K

Uy

= ugli,

where, in terms of the position vector r of a point on the middle surface, =10ty =1"r
and n = t; x ty. With

[bo)} = —2moi, = Q.. [uo)? = 2muoi, = Ui, (6.9)

we see that Q. and U, have the meaning of relative circumferential edge rotation and
displacement, respectively, for a shell slit along a meridian.

7. ASYMMETRIC BENDING AND TWISTING OF RING SHELL SECTORS

We now formulate the boundary value problem involving non-periodic displacement
fields of the type discussed in section (6). Consider a ring shell sector bounded by & = ¢,.
E=2¢p (&< &p) and 0 = +6, (0, < ). The shell is free of surface loads and the two
parallel circular edges ¢ = &; and & = &, are free of edge tractions. At the meridional
edges 8 = +0,,the shell is subject to equal and opposite resultant forces acting in directions
parallel to the base plane, and to equal and opposite resultant moments turning about
axes parallel to the base plane. Of interest are the relative edge displacement and rotation
as well as the stress distributions produced by these forces and moments.

The equations developed in the preceding sections are directly applicable for the analysis
of the special case of this problem where the forces are in directions parallel to the y-axis
and the moments are turning about axes parallel to the x-axis (see Fig. 2). Results for
the case where the forces are in directions parallel to the x-axis (with equilibrating moments)
and the moments are turning about axes parallel to the y-axis can be obtained from the
results of the preceding case by interchanging the roles of sin 0 and cos (). The solution
for the general case can be obtained by an appropriate combination of the results of thesc
two special cases.

For the case shown in Fig. 2, overall equilibrium requires that P, = 7, = 0 since the
shell is free of surface loads as well as edge loads along & = & and & = . The governing
differential equations are therefore (5.1) and (5.2) with terms involving P, , T, and p, omitted.

The conditions of no edge tractions along the parallel edges require the stress resultants
and stress couples to satisfy the homogeneous Kirchhoff-Bassett contracted conditions
which, in view of (2.1), take the form n; = ng+m/Ry = m; = q.+m/r =0 for ¢ = ¢,
and &,. Of the four conditions at each edge, only two are independent conditions. This 1s
evident once we rewrite the first integrals (3.1) and (3.3) (with P, = T, = 0) in the form

r m z'
“He— | Reg+ 5
o

m K , m _
R, — (q¢+—r) =0, fxmf—r:nf—rr(qé-Fr) = (}. (7.1

o4
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The differential equations and the two independent boundary conditions
m
&= ¢idor ”z:&“*'i{ =m; =0 (7.2)
é
[expressed in terms of Y and ¢ by way of (5.3)] determine ¢ and ¥ in terms of Q, and U,.
We write the solution in the form
¢ = Qx¢ﬂ+ Uy¢U’ l// = Qx‘//Q+UylllfU (73)

where ¢q,. .., ¥y do not depend on Q_and U,.
Along the edges 8 = +8,, we will prescribe only that overall force and moment
conditions be satisfied. In view of (2.1), the six force and moment conditions take the form

Sof p m\ =z w 2z'm |%°
[ e ) Sl e [0 o

i

ﬁ{) . ¥ ¢ 22' . fo
Y e

’ o Ré o o o &i

o —zr 'tz ' ’
j {{” T (no§+ﬁ) St (qe+ﬂﬂ sin® 0 —[r—mﬁzng} cos? B}zxdf
& « Ri ® % *

. 721 Eo
- [rr e (2m) sin? 9} = M.

% &

(7.4)

Terms outside the integral signs in these conditions represent the corner forces introduced
by the assumption of no transverse shear deformation.

Through the use of the equilibrium equations (3.2)43.7) (with p. = s = p, = 0) the
boundary conditions (2), and the differentiation formulas (*'/¢) = z//R; and (Z'/a) =
~1'/R;, it can be shown that the first four homogeneous conditions in (4) are satisfied
identically while the last two inhomogeneous conditions become

Lo go
F =J. nye d&, = -—-J‘ {r'mg+ zomg) d& (7.5)

i i

where F and M are the applied force and moment respectively. To illustrate the nature of

the analysis, we note that integration by parts and the use of the equilibrium equation (2.3)
transform the first condition of (4) to read

5o ! &o
R e e R e )
4] &i
So Eo
:f {r E‘ n~an9—z'q9}df+[zm]
i % &i

&o &o

ngg""‘ Ré) +
(7.6)

It

, Z'm
{”nog""ano 2'qy} df“‘“{ o }
& 5]

Zo z'm 1% m go
- d e e JR—
J: (r"ée) €+[ & ]":t [r(n§ﬂ+R9):]fi

where the right hand side vanishes because of the first boundary condition of (2).

i
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Upon expressing n, and m, in terms of ¢ and y, we have two linear stiffness relation:
of the form

F = U,Cpy+Q.Crq, M = U Cyy+Q.Cuq (7.7

where the stiffiness coefficients Cpy, etc. do not depend on U, and Q.. These stiffness
relations determine the force F and moment M needed to produce the edge dislocations
associated with Q, and U,. Alternately, given F and M. they determine Q_ and U, and
therefore the corresponding edge dislocations.

We indicated in Section (5) that the argument which allowed us to simplify the expression
for ne, ng:, gy and m is also applicable to the expressions for n,, m; and my. In particular,
it can be shown that when the ¢-terms contribute significantly to n, in (5.3), the direct stress
associated with n, is O(h/R) compared to the bending stresses and the accuracy of n, in
this case is therefore of no consequence insofar as the accurate determination of the stress
level in the structure is concerned. However, we refrained at the time from omitting the
¢-terms in ng and the y-terms in m, and m, anticipating that the accuracy of n,, m, and m,
may affect the final solution of a given problem in some other ways. It is now evident from
the first equation of (5) that the accuracy of n, is crucial to an accurate determination of
the stiffness coefficients and therefore the final solution of the present problem. On the
other hand, the underlined terms in m, and m, do not contribute significantly to (5). However,
the static geometric duality suggests that these terms will be significant for an accurate
determination of k., which may be important in another class of problems to be discussed
in a future publication.
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APPENDIX
To obtain the solution (4.9), it seems that one would have to invert 4 6 x 6 matrix.
We will show here that by using the static geometric duality properties of the elements
of the relevant matrix, we only need to invert two 3 x 3 matrices.
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Denoting the coefficient matrix of the relevant matrix equation by A and its inverse by B,
we partition 4 and B each into four 3 x 3 submatrices:

B B
A= [An Alzil B = I: 11 12:| ()
At A% Bf, B},

Since
BA - [B11A11+B12A’{‘2 B11A12+BIZA‘{‘I} _1 2
B},A;, +Bf 4T, B4, +Bf4T
where I, is an n x n identity matrix, we must have
By A 1+ By,A%, = 15, By{A,,+B,AT, =0 3)
B} A% +Bt,4,, = 15, B¥, A%, +B%,A,; = 0. )
From the second relation in (3) and (4), we have further
By, = —B11A12(AT1)_1, B}, = —BT1AT2(A11)A1- (5)-
Upon introducing (5) into the first relation in (3) and (4), we get
By, = [AII—AIZ(ATI)_IATZJ\& T = [4%, “Afz(All)‘lez]_l' (6)

Having (6), we get B,, and B¥, from (5).

Now, for our particular matrix 4, A% and A%, are the static geometric duals of A4,
and A,, respectively. From (5) and (6), B¥, and B, are evidently the duals of B;, and
B, ,, respectively, so that we need only to do the necessary calculations for B,; and
B,,. These calculations involve only the inversion of the two 3 x3 matrices A%, and
(A, — A5(AT) ' At,).

(Received 24 April 1969 ; revised 1 October 1969)

AdcerpakT—CucTemMa YPaBHEHUR JIMHEHHOH TEOpUM M3OTPOMHBIX YNPYrux 000JI04eK BPALUCHHS, AN
CHUHYCOMAANBLHBIX B MOJSPHOM YIJi€E OCHOBHOHN TIJIOCKOCTH, C NIepUOAOM 211, HanpsxeHnih v aedopmaumi,
COKpAalUAEeTCs K IBYM COBMECTHbIM OOBIKHOBEHHBIM JudhepeHHUANBHBIM YPABHEHUAM BTOPOTO MOPAJIKA.
OTH ypaBHeHUS TOXOXM Ha COOTBETCTBYIOLUME YPaBHEHHUS IS CMMMETPUYECKOro M3rnba. B ceeacHumn
3KCTCHCUBHO UCMOJB3YETCA CTATHYECKAs TEOMETPUYECKAs AHANoOlWA, ¢ LUENbI YNPOIUEHHA aAHAIU3a W
JaeTC BO3IMOXHOCTh MOJYYHTHL HENEPMOAMYECKOE Nousie nepemelleHuit. JlaloTesi, BO mepBbie, B pamkax
Teopuu 0bomnouek, GopMYINbl AMA 3a4a4M OCECHMMETPHYECKOTO KPyYeHHA W U3rnba CexTOpOB KOMbLEBbIX
o6onouek, cBA3AHHON C HEMEPUOAMYECKHM AeDOPMALIMOHHBIM COCTOSHUEM.



